

Markscheme

May 2017

Extended mathematics

On-screen examination

21 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

The annotation **OE** meaning Or Equivalent is used in the mark scheme.

Error Carried Forward (ECF) marks

Errors made at any step of a solution affect all working that follows. In general, Error Carried Forward (ECF) marks are awarded after an error.

- a) ECF applies from one part of a question to a subsequent part of the question and also applies within the same part.
- b) If an answer resulting from **ECF** is inappropriate (*eg*, negative distances or sinx > 1) then subsequent marks should not be awarded.
- c) If a question is transformed by an error into a simpler question then ECF may not be fully awarded.
- d) To award **ECF** marks for a question part, there must be working present for that part.
- e) ECF is only applied to working which is correct. This means that all working subsequent to an error must be checked for accuracy.
- f) A misread (**MR**) is an error. **ECF** is normally awarded.

General points

- a) As this is an international examination, accept all alternative forms of **notation**, for example 1.9 and 1,9 or 1 000 or 1.000. However **DO NOT ACCEPT** incorrect mathematical notation e.g x² for x² unless noted otherwise in the markscheme.
- b) Ignore further working after a correct answer **unless** it indicates a lack of mathematical understanding **i.e. if the further working contradicts the correct answer**, then the last mark cannot be awarded.
- c) Where candidates have written two solutions to a question, mark the response that deserves more marks.
- d) In the markscheme, equivalent examples of numerical and algebraic forms or simplified answers will generally be written in the notes preceded by OE or equivalent e.g.

$$\frac{1}{2}$$
 OR 1/2 **OR** 1÷2 and $\frac{x}{2}$ **OR** x/2 **OR** x÷2

- e) In the markscheme, information provided in brackets indicate detail that may be seen in a candidate response but is not necessary to award the marks.
- f) Special case marks SC can be allocated instead of but not in addition to the marks prescribed in the markscheme.

Example 1

- g) Accept seeing equations not in-line.
- h) Accept notation errors in intermediate steps.
- i) When a calculator screenshot is taken, accept not seeing the whole operation.

• 1 mark awarded and corresponding notes are aligned

b	• ¹ Show clear line of reasoning in the method	•1 45 & 49 seen OE	
		eg, 49 = 45 + x	2
			2
	•2 4	• ² ACCEPT $4.5 + X/10 = 4.9$ and Ans 4	

Task 1

	Answers	Notes	Total
а	A∩B∩C	1 mark ACCEPT (A \cap B) \cap C ACCEPT (A \cap B) \cap (C \cap A) or similar	1
b	{5, 6}		1
С	 •¹ For A ∩ (B U C) = {2, 5, 6} •² For (A ∩ B) U (A ∩ C) = {2, 5, 6} 	Correct answers might be seen in part (d) Note: The name of the set must be seen to get the mark. for {2, 5, 6} seen without being named: Award 1 mark for {2, 5, 6} seen twice but without any name: Award 1 mark	2
d	They are the same (or equal)	ACCEPT: It illustrates the distributive law (for sets, for \cap over U) or A \cap (B U C) = A \cap B) U (A \cap C) ACCEPT "both contain 2,5,6 WTTE, ECF from (c) for example {2, 5, 6} and {2, 5, 7} and response in (d) - "2 and 5 are in both sets" or similar	1
е	 •1 {1, 2, 5, 6} Alternative method using set algebra •1 simplifies eg A ∩ (B U B') using rule from b) 	1 mark for set Do not ACCEPT partial answers for •1 eg {2, 5, } U {1, 6} •2 WTTE.	2

		Answers	Notes	Total
2	a	 In the medians) 57 and 52 seen This means the average age of medicine is older/bigger than physics WTTE In the interquartile ranges) 20 and 15 This means the winners in physics are more close/less spread in age. This comment must refer to spread. 	 [•]¹ Is for mathematical observation for example: (Median Q2 medicine =) 57 (Median Q2 physics =) 52 ^{•1} for both values seen and no comment award 1 mark ^{•1} ACCEPT 5 seen for 1 mark ^{•1} and •² "in general medicine is older by 5 years" WTTE award 2 marks ^{•3} Is for mathematical observation for example: (IQR for medicine 67-47=) 20 (IQR for physics 62-47 =) 15 ^{•3} award for both values seen and no comment, accept differences 67- 47; 62-47 ^{•3} DO NOT ACCEPT 'IQR is between 47 and 67' or WTTE ^{•3} DO NOT ACCEPT 'the majority is between 47 and 67' or WTTE ^{•3} must refer to IQR not range in general ^{•4} Do not accept "less skewed" ^{•4} ACCEPT 50% (in this range) 	4
	b	 ¹ 155 seen ² their 155/210 ¹ 11 seen 	 ² OE for example 0.7 OR 0.738 OR 0.74 OR 73.8 % OR 74 % OR better: ¹ 11 can be seen anywhere in <i>their</i> working 	2
	C	• The seen 11 • $2 \frac{11}{\text{their 155}}$	• ² OE for example 0.071 OR 0.07 OR 7.1 % OR 7% OR better:	2

		Answers	Notes	Total
2	d	 •1 Applying the 20% to 210 •2 Read off the graph the corresponding age 	•1 $\frac{20}{100} \times 210$ OR 42 OR $\frac{80}{100} \times 210$ OR 168	2

		Answers	Notes	Total
3	а	Step a: 14,3 . Step c: 5,7, 3		
		• ¹ All step a correct	• ¹ 14, 3	2
		• ² All step c correct	• ² their 5, 7, their 3	
	b		Allow ECF for from their step a	
		• ¹ Correct sum of their numbers	• ¹ their 83	
		• ² Not divisible by 10 <i>or</i> Not a multiple of 10	• ² Accept 'must be a multiple of 10'	2
			Sum their values correctly to a number divisible by 10 and saying it is valid because sum is divisible by 10 award •1 only	
	С	• ¹ (61 + X =) 70		
		• ² (X =) 9	9 seen no working: Award 2 marks	
				2

		Answers	Notes	Total
3	d	•1 Instruction F correct	If the doubled digit is a two-digit number) add the two digits together Accept "add the two numbers together" OR WTTE	
		• ² Instruction G correct	•2 Add the numbers Accept "plus" the numbers OR "sum" the numbers OR WTTE	
		• ³ Instruction H correct	•3 If the sum is divisible by 10 then it is valid OR if the sum is not divisible by 10 then not valid OR check if (make sure) the number is divisible by 10 OR WTTE The instruction has to be in the correct place to award the mark	
			SC: Step G adding and if sum divisible by 10 valid. Step H adding and if sum not divisible by 10 invalid Award only 1 mark for • ² and • ³ .Award • ¹ as appropriate	3
			SC: Step G adding and if sum divisible by 10 valid Step H if the sum not divisible by 10 invalid Award 2 marks for • ² and • ³ .Award • ¹ as appropriate	

		Answers	Notes	Total
4	a	•1 $2f(x-2) = 6$ •2 $f(x-2) = 3$ •3 $x-2 = 6$ OR $f(6) = 3$ •4 $x = 8$	Marks awarded for • ¹ first algebra step, number to other side • ² second algebra step, divide by 2 • ³ refers back to table • ⁴ algebra step	4
	b	• ¹ 0 • ² 2		2
	C	 •¹ f(g(0)) = f(g(4)) (= -4) •² The inverse function of -4 has two different values 	 ^{•1} May be implied Accept for 2 marks 0 and 4 both go to -4 f(g(x)) is not a one to one function f(g(x)) is a two or many – one function Horizontal line test for f(g(x)) gives two values Vertical line test for the inverse of f(g(x)) gives two values The inverse function has two different values for the same value for a single value of x there are two values of y f(g(x)) has several values in x for the same value in y, so the reciprocal/inverse will have several values in y for the same value in x 	2

Task 2

		Answers	5	Notes	Total
5	а	(BCA) = 57			1
	b	• ² $\frac{100}{\sin(their 57)} = \frac{R}{\sin 3}$ Attempt to solve for R	ote: Some candidates notice that BE is a 30,60,90 triangle and can rrite down without working that E is 50 and AE is 50V3	 Alternative method 1 1 mark for use of sine rule 2 1 mark for correct substitution in sine rule 3 1 mark for attempt to solve (do not have to see this step) 4 1 mark for showing the answer before approximations 	
		Alternative method 2 •1 $\sin 30 = \frac{BE}{100}$ OR $\cos 30 =$ •2 $\tan 33 = \frac{their BE + R}{their AE}$ •3 $\tan 33 = \frac{correct BE + R}{correct AE}$ •4 (R=) 6.2403478(m) 6.24 AG	$= \frac{AE}{100}$ BE = 50 AE = 86.6025 AC = 103.26 EC=56.2403	 Alternative method 2 •¹ 1 mark for using correctly sin or cos •² 1 mark for using tan •³ 1 mark for correct values used with tan •⁴ 1 mark for showing the answer before approximation (may be seen as 56.24034 earlier) 	4
		Alternative method 3 •1 $\cos 30 = \frac{AE}{100}$ •2 $\cos 33 = \frac{theirAE}{AC}$ •3 their 03.3 ² = $(50\sqrt{3})^2$ + EC ² a •4 (R=) 6.2403478(m) AG 6.24m	and EC = 56.2403478	 Alternative method 3 ^{•1}1 mark for finding AE, cos30 = AE/100 OR by inspection 50√3 ^{•2} 1 mark for finding AC = 103.3 ^{•3} 1 mark for correct values in Pythagoras and find EC ^{•4} 1 mark for showing the answer before approximation (may be seen as 56.24034 earlier) 	

		Marks	Notes	Total
5	b	Alternative method 4 • ³ Sin 33° = EC/their AC and their EC • ⁴ (R=) 6.2403478(m) AG 6.24 m Alternative method 5 Cos rule • ³ R = $\sqrt{100^2 + 103.26^2 - (2x100x103.26 \times \cos 3^\circ)}$ • ⁴ (R=) 6.2403478(m)	 Alternaive method 4 •³ 1 mark for their values in SOH and find EC •⁴ 1 mark for showing the answer before approximation (may be seen as 56.24034 earlier) Alternative method 5 •³ 1 mark for correct substitution in cosine rule •⁴ 1 mark for showing the answer before approximation 	
	C	 •¹ Substituting 6.24 correctly into volume formula •² Volume calculated correctly using <i>their</i> radius •³ Their value correctly approximated to nearest m³ 	 •1 ⁴/₃π(6.24)³ Accept: 4/3*π6.24^3 •² their1017.7529(using π) OR their1017.237 (using 3.14) OR 323.96π OE •³ 1018 (m³) OR 1017 (m³) 	3

	Answers	Notes	Total
5 d	 *¹ A valid mathematical reason *² Another valid reason (mathematical or not) 	Mathematical reasons: (i) Referring to rounding of measurements OR calculations (ii) Referring to inner and outer diameter OR thickness of sphere Examples of real-life reasons: (i) Referring to shape not a perfect sphere (ii) Referring to the sphere is not totally filled with water (regardless of the reason) (iii) Expansion of water DO NOT ACCEPT the vertical/pipes post may include water as well DO NOT ACCEPT referring to errors in measurements given Do NOT ACCEPT "because maybe I made mistakes"	2

5	е	Marks	1	2	
		(H)	Two attempts from any of the calculations below:	Calculate correctly the amount of water used by households per	
		Calculate total		hour:	
		water	Dividing 300000 by 4 to find the number of	(27 450 000/24 =) 1 143 750 litres per hour	
		consumption for the households in	households 300 000/4 (= 75 000) households		
		the community	OR		
		the community	Multiplying their 366 by their 75000 to find the		
			amount of water consumed per day by households	OR	
			their366 * their 75000 (= 27 450 000) litres per day	(15.25*75000=)1143750 litres per hour	
			OR		
			Dividing their 366 by 24 to find the amount of water		
			in litres per hour for each household		
			their366/24(=15.25) l/h OR		
			Calculating how many litres for every household		
			during the 4 hours outage time		
			OR		
			Acceptable estimation for the amount of water used		
			by household per hour (between 1100 000 and		
			1200000) without calculations		10
		(L) Calculate total	One attempt from the calculations below:	Calculate correctly the amount of water used by individuals per hour:	
		water	Multiplying 300000 by their 51 to find the amount of	Ex: (15300000/24=)637500 litres per hour	
		consumption for	water consumed per day by the individuals		
		individuals in the	Ex: 300 000 × <i>their</i> 51 (=15 300 000) litres per	OR	
		community	day	(2.125*300000=)637500 litres per hour	
			OŔ		
			Dividing by 24 to find amount of water consumed		
			per individual per hour		
			Their 51/24(=2.125) l/h		
			OR Calculating how much litres for every individual		
			during the 4 hours outage time		
			OR		
			Acceptable estimation for the amount of water used		
			by individuals per hour (between 630000 and		
			650000 l/h) without calculations		

Marks	1	2
(T)	Attempt to calculate estimate for time:	Calculating their estimate combining both household and
Estimate amount	Household	individual information correctly
of time before the	950 000	
water runs out	950 000 their 1 143 750 (≈ 0.830hrs ≈ 50 mins)	
		950 000 0 5 (22) hrs - 20 to 25 mins
	OR	$(\frac{950\ 000}{\text{their}\ 1\ 143\ 750 + \text{their}\ 637\ 500}) \approx 0.5(33)$ hrs $\approx 30\ \text{to}\ 35\ \text{mins}$
	Individual	
	$\frac{950\ 000}{their\ 637\ 500} (\approx 1.49hrs \cong 89 \text{ mins})$	
	their 637 500	
	OR	
	attempt for household and individuals but wrong	
	result	
	$950\ 000$ (~ pot 0.5)	
	<i>their</i> 1143 750 + <i>their</i> 637 500 (≈ <i>not</i> 0.5)	
(A)	Advice related to minimizing the use in general	Advice requesting clearly to stop/reduce at least two of the
Advice for the	OR	following activities that consume too much water:
community	Advise related to minimize/stop one specific activity	Showers, wash dishes, washing clothes, or garden watering
(J)	Weak justification not supported	Good justification supported
Justification of		
degree if	Examples:	Examples:
accuracy	This is just an estimate	Comment that the time calculated is if all population do not
	OR	respond to advice and that the estimate of time can be more if
	We never know for sure the actual amount	they respond to advice
	OR	OR
	This is just an average	Calculate time if they respond to advice
	OR	OR
	Correct and sensible rounding for their value(s) of	the number of persons per household is an average so not
	time Example 30 min or 0.5 hours	accurate
		OR
		Referring to fact that during the specific 4 hours of outage not all
		activities considered in calculations are actually performed
	Do not accept : "my time is very accurate because I	
	made the correct calculations"	

	orrect units i n E and J	Total 10 marks			
6	Marks	1	2		
С	Calculates the area of the Circle	$\pi \times 10^2~$ method/formula eg finds area of circle. Seen or implied at T			
т	Calculation for the equilateral T riangle	$\frac{1}{6}$ of circle seen OR $3 \times \frac{1}{6}$ of circle seen OR $\frac{1}{2}$ of circle seen	Their area of three sectors (50π) OR their157(.0796327)		
A	Correct A rea for the triangle without a signal	173 - 50π , accept their 50π, sets up subtraction OR 15.9() OR 16 OR answer to 173 - their 157(.0796327)			
S	Calculation for the S quare without a signal	Implies that full circle inside the square OR $4 \times \frac{1}{4}$ of circle seen OR 100 π	$400 - \pi \times 10^2$ sets up subtraction OR 85.8() OR 86		
E	Comparison of the Efficiency of the two ways the transmitters have been positioned	Triangle is smaller in area than the square OR Triangle has a smaller area without signal than the square (Their 85.8 – their 15.9)	Triangle is smaller in area than the square AND Triangle has a smaller area without signal than the square (Thei 85.8 – their 15.9)		
J	Justification of the most efficient layout	 One numerical statement/comparison from eg Triangle has 9.2% not covered Square has 21.45% not covered Double the triangle to 346 and its 31.86 not covered Doubling the triangle shows that there is a lot smaller area not covered than the square 	 Two numerical statement/comparison from eg Triangle has 9.2% not covered Square has 21.45% not covered Double the triangle to 346 and its 31.86 not covered Doubling the triangle shows that there is a lot smaller area not covered than the square 		

Task 3

		Answers	Notes				
7	a	 Any three correct: award 1 mark All correct 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2			
	b	$y_{\rm c} = -\frac{1}{4k}$		1			
	C	 •¹ Completing the pattern for another value not in the table k≥ 6 adding 4 to denominator (20+4=24 seen) •² Calculating y_c = -¹/₄₍₆₎ = -¹/₂₄ •³ Comment that they are equal 	 Award 1 mark for testing a value from the table k ≤ 5 but only if the three verify steps are seen value from the table calculate from the rule say they are the same/values are correct. 				
	d	Alternative method 1•1 $\frac{y_A - y_C}{x_A - x_C} = 1$ and $\frac{y_A - y_C}{\frac{1}{2k} - 0} = 1$ •1Gradient formula = 1 and correct substitution for x_A					
		•1 $\frac{y_{A} - y_{C}}{x_{A} - x_{C}} = 1$ and $\frac{y_{A} - y_{C}}{\frac{1}{2k} - 0} = 1$ •2 $\frac{k(x_{A})^{2} - y_{C}}{\frac{1}{2k} - 0} = 1$ OR $\frac{k(\frac{1}{2k})^{2} - y_{C}}{\frac{1}{2k} - 0} = 1$	• ² Correctly substitutes $y_A = k(x_A)^2$ or $y_A = k\left(\frac{1}{2k}\right)^2$	3			
		• ³ $k(x_A)^2 - y_C = \frac{1}{2k}$ OR $k\left(\frac{1}{2k}\right)^2 - y_C = \frac{1}{2k}$	• ³ further working to $y_{\rm C} = -\frac{1}{4k}$				
		$y_{\rm c} = -\frac{1}{4k}$ AG	$y_{\rm c} = -\frac{1}{4k}$ is seen at part b) and here it is the same as AG				

mathemoeengtz0xxxx

		– 18 ·	8 – mathemoeengtz0xxxx			
		Answers	Notes			
7	d	Alternative method 2 •1 $\frac{k(x_A)^2 - y_C}{k_A} = 1$	c_1 Credient formula 1 and correct substitution for w and $w = k(w)^2$			
		•1 $\frac{k(x_A)^2 - y_C}{\frac{1}{2k} - 0} = 1$	• ¹ Gradient formula = 1 and correct substitution for x_A and $y_A = k(x_A)^2$			
		• ² $k(x_A)^2 - y_C = \frac{1}{2k}$	• ² Cross multiplies correctly			
		•3 $k\left(\frac{1}{2k}\right)^2 - y_c = \frac{1}{2k}$ $-y_c = \frac{1}{2k} - k\left(\frac{1}{2k}\right)^2$	• ³ Substitutes $k \left(\frac{1}{2k}\right)^2$ for $k(x_A)^2$ and further working to $y_C = -\frac{1}{4k}$			
		$-y_{c} = \frac{1}{2k} - k \left(\frac{1}{2k} \right)$ $-\frac{1}{4k} = y_{c}$	$y_{\rm c} = -\frac{1}{4k}$ is seen at part b) and here it is the same as AG			
		AG				
			SC			
			Award 2 mark for a "proof" similar to example below. It is based on $y_A = -y_C$ which has been found by inspection.			
			$\frac{y_{\rm A}-y_{\rm C}}{x_{\rm A}-x_{\rm C}}=1$			
			$\frac{-y_c - y_c}{\frac{1}{2k} - 0} = 1$			
			$-2y_{\rm c} = \frac{1}{2k}$ $-\frac{1}{4k} = y_{\rm c}$			
			4k ³ c			

		Answers	Notes		
7	е	X_{c} has the same value as p	$X_{c} = p$		
	f	Alternative method 1	ACCEPT:		
		• ¹ The denominators of \mathcal{Y}_{c} are always 8	The values of \mathcal{Y}_{c} go up by 1 : award 2 marks		
		• ² The numerator of y_c goes up by 8			
		Alternative method 2		2	
		•1 It is an arithmetic progression			
		• ² The common difference is 1			
	g	• ¹ The rule can be obtained by substituting $k = 2$ into -1/4 k and then testing/trial and error OR by inspection 0 -1/8; 1 - 1/8 etc	• ¹ for suitable working		
		• ² $y_c = \frac{8q-1}{8}$ OR $y_c = q - \frac{1}{8}$ OR If no working seen award 1 for each part	• ² working can be implied by a correct answer.	2	

7	h								Communication	
		Mark	Predictions	Description	Testing	Verifying	Justify/proof	Notation and	Communication	
		магк	Р	D	Т	v	J	terminology N	С	
		1	Attempted to make predictions	Attempted to describe a pattern	Attempted to test their described pattern OR general rule	Attempted to verify their described pattern or general rule	Attempted to justify their described pattern OR general rule	The notation OR terminology are not always correct	No communication. Only calculations or algebraic steps	
		2	Correctly predicted one term	Correctly described one pattern OR a simple pattern	Tested correctly their described pattern	Verified correctly their described pattern OR general rule	Justified their general rule correctly	The notation and terminology are correct Award only if D3 is awarded	Some coherent communication	
		3	Correctly predicted more than one term Accept predictions with p = 0 OR q = 0	Correctly described more than one pattern OR one complex pattern	Uses a correct general rule to generate a value given in the table Award only if D5 is awarded		Attempted to prove their general rule		Good coherent communication Award only if J2 is achieved	22
		4		Attempted to describe pattern as general rule			Correctly proved their general rule			
		5		Correctly described pattern as general rule						

Exemplification

-**Prediction**: Makes entries in the table. Accept predictions with p = 0 or q = 0

-Description of the pattern: $x_c = p$ y_c denominator multiple of 4 (4k), numerator 4kq -1 $y_c \uparrow q$

-General rule : $x_c = p$ and $y_c = -1/4k + q$ OR $y_c = \frac{-1 + 4kq}{4k}$ OR $y_c = q - \frac{1}{4k}$

- **Testing** the rule using values given in the table

Ex. k=2, p=2, q=1 $x_c=2$ $y_c=7/8$ \Rightarrow $x_c=p=2$ and this agrees with table $y_c=q-\frac{1}{4k}$ $y_c=1-\frac{1}{4(2)}=\frac{7}{8}$ and same as the table

- Verifying the rule by one value not given in the table

Ex. k = 4, p = 2, q = 1, $x_c = 2$ $y_c = 15/16 \implies x_c = p = 2$ and this agrees my table $y_c = q - \frac{1}{4k}$ $y_c = 1 - \frac{1}{4(4)} = \frac{15}{16}$ and this agrees with the table

- Proving

C(0, y_c) where $y_c = -1/4k$ so C(0, -1/4k) After (p, q) is applied \Rightarrow C become C(0 + p, -1/4k + q) So $x_c = p$ and $y_c = -1/k + q$ OR $y_c = \frac{-1 + 4kq}{4k}$